Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
De Bona, Thayner Gomes |
Orientador(a): |
Brietzke, Eduardo Henrique de Mattos |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/150799
|
Resumo: |
O objetivo principal deste trabalho e descrever os números inteiros que podem ser representados nas formas 9x2+16y2+36z2+16yz+4xz+8xy e 9x2+17y2+ 32z2 - 8yz + 8xz + 6xy. Para isso, utilizamos uma série de resultados envolvendo funções theta, como a identidade do produto triplo de Jacobi e equações modulares. |