Uma abordagem Bayesiana para previsão de custos de suporte de projetos de gerenciamento de TI

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Dalmazo, Bruno Lopes
Orientador(a): Gaspary, Luciano Paschoal
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/39199
Resumo: Existe uma noção intuitiva de que os custos associados a ações de suporte de projetos de gerenciamento de Tecnologia da Informação (TI), muitas vezes considerados já muito elevados e em crescimento, possuem forte vinculação com esforços empreendidos nas fases de desenvolvimento/implantação e teste. Apesar da importância de caracterizar e compreender a sistemática dessa relação, pouco tem sido feito neste domínio, principalmente devido à falta de mecanismos adequados tanto para o compartilhamento de informações entre as fases de um projeto de TI, quanto para aprender com experiências passadas. Para lidar com essa problemática, propõe-se nesta dissertação uma abordagem para estimar dinamicamente os custos de suporte de projetos de gerenciamento de TI à luz de informações provenientes das fases de desenvolvimento/implantação e teste. As estimativas de custos são calculadas a partir da integração de informações produzidas ao longo do ciclo de vida de projetos (passados). O núcleo da solução presente neste trabalho conta com um modelo Bayesiano para realizar previsão de custos de suporte, apoiado em um modelo de informação usado para persistir informações históricas. Para provar conceito e viabilidade técnica da solução proposta considerou-se, como estudo de caso, a predição de custos associados com projetos de implantação de infraestrutura de redes sem fio. Durante a avaliação é demonstrada a eficácia e eficiência do modelo, bem como discutido suas potencialidades e limitações para auxiliar no entendimento do compromisso entre custos de desenvolvimento/ implantação, teste e suporte. A avaliação conduzida fez uso de dados reais/sintéticos produzidos a partir de projetos do ISBSG e apresenta resultados próximos dos encontrados em cenários reais. Nossa abordagem obteve cerca de 80% de acerto na estimativa dos custos de suporte para os cenários avaliados.