Estimação em classes de processos estocásticos com decaimento hiperbólico da função de autocorrelação

Detalhes bibliográficos
Ano de defesa: 2002
Autor(a) principal: Pasini, Bárbara Patricia Olbermann
Orientador(a): Lopes, Sílvia Regina Costa
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/3031
Resumo: Neste trabalho analisamos processos estocásticos com decaimento polinomial (também chamado hiperbólico) da função de autocorrelação. Nosso estudo tem enfoque nas classes dos Processos ARFIMA e dos Processos obtidos à partir de iterações da transformação de Manneville-Pomeau. Os objetivos principais são comparar diversos métodos de estimação para o parâmetro fracionário do processo ARFIMA, nas situações de estacionariedade e não estacionariedade e, além disso, obter resultados similares para o parâmetro do processo de Manneville-Pomeau. Entre os diversos métodos de estimação para os parâmetros destes dois processos destacamos aquele baseado na teoria de wavelets por ser aquele que teve o melhor desempenho.