Propriedades de recuperação de memória em redes neurais atratoras.

Detalhes bibliográficos
Ano de defesa: 1997
Autor(a) principal: Rodrigues Neto, Camilo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/76/76131/tde-31102008-173551/
Resumo: Redes neurais atratoras são redes de neurônios artificiais com realimentacão e sem estrutura de conexão pré-definida. Estes tipos de redes apresentam uma rica dinâmica dissipativa e são freqüentemente utilizadas como memórias associativas. Tais dispositivos tem a propriedade de recuperar uma memória previamente armazenada, mesmo quando expostos a informação parcial ou degradada daquela memória. Armazenar uma memória significa criar um atrator para ela na dinâmica da rede e isto e feito especificando-se adequadamente os pesos sinápticos. Nesta tese, nos concentramos basicamente em duas maneiras de se definir os pesos sinapticos, que dão origem ao modelo da pseudo-inversa e ao modelo dos pesos ótimos. Para redes neurais extremamente diluídas, onde a conectividade C e o número de neurônios N satisfazem à condição C&#171 In N obtivemos os diagramas de fase no espaço completo de parâmetros dos modelos da pseudo-inversa e dos pesos ótimos através da analise da dinâmica da correlação de recuperação dos padrões armazenados. Alem disso, investigamos as propriedades de recuperação de redes neurais completamente conectadas através de duas abordagens: a investigação analítica da vizinhança dos padrões armazenados e a enumeração exaustiva dos atratores por meio de simulações numéricas. Finalmente. estudamos analiticamente o problema da categorizarão no modelo da pseudo-inversa. A categorizar;ao em redes neurais atratoras e a capacidade da rede treinada com exemplos de um conceito desenvolver um atrator para este conceito.