Introdução de dados auxiliares na classificação de imagens digitais de sensoriamento remoto aplicando conceitos da teoria da evidência

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Lersch, Rodrigo Pereira
Orientador(a): Vitor Francisco de Araújo Haertel
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/15276
Resumo: Nesta tese investiga-se uma nova abordagem visando implementar os conceitos propostos na Teoria da Evidencia para fins de classificação de imagens digitais em Sensoriamento Remoto. Propõe-se aqui a utilização de variáveis auxiliares, estruturadas na forma de Planos de Informação (P.I.s) como em um SIG para gerar dados de confiança e de plausibilidade. São então aplicados limiares aos dados de confiança e de plausibilidade, com a finalidade de detectar erros de inclusão e de omissão, respectivamente, na imagem temática. Propõe-se nesta tese que estes dois limiares sejam estimados em função das acurácias do usuário e do produtor. A metodologia proposta nesta tese foi testada em uma área teste, coberta pela classe Mata Nativa com Araucária. O experimento mostrou que a metodologia aqui proposta atinge seus objetivos.