Estimativa do teor de água no solo em bacia hidrográfica com redes neurais artificiais utilizando fatores físicos e climáticos

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Oliveira, Marquis Henrique Campos de
Orientador(a): Castro, Nilza Maria dos Reis
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/109779
Resumo: O teor de água no solo é um dos fatores determinantes nos processos de transferência entre o solo e a atmosfera, contribuindo nos balanços de água e de energia. Esse teor é influenciado pelas entradas de água na bacia hidrográfica, por características climáticas, topográficas, de cobertura vegetal, práticas de manejo agrícola e propriedades do solo. A grande heterogeneidade desses fatores faz com que a caracterização desse teor seja ainda um grande desafio. Essa pesquisa objetivou desenvolver abordagens baseadas em Redes Neurais Artificiais (RNAs) para determinação da variação espacial e temporal do teor de água no solo, utilizando informações climáticas, propriedade físicas do solo e variáveis topográficas de uma bacia hidrográfica, com área aproximada de 78 km², localizada na Região Sul do Brasil (bacia do Taboão). A RNA adotada é uma rede de duas camadas, com 25 neurônios na camada intermediária, sendo o treinamento realizado por meio do algoritmo retropropagativo, considerando16 iterações iniciais dos pesos sinápticos, e número máximo de ciclos igual a 30.000. No total foram testadas 40 variáveis de entrada, sendo quatro referentes à topografia (altitude, declividade, distância do ponto ao trecho do rio mais próximo e desnível do ponto ao trecho mais próximo do rio); oito relacionadas ao solo (tipo de solo, densidade do solo, resistência à penetração no solo para as camadas de 0 a 20 cm e 20 a 40 cm, tensão da água no solo em apenas um ponto na bacia e percentual de argila, silte e areia), 10 relativas ao clima (clima, evapotranspiração de referência, temperatura do ar máxima e temperatura do ar, umidade relativa do ar máxima e umidade relativa do ar mínima, pressão atmosférica, radiação solar global, velocidade do vento e temperatura na relva), e 18 variáveis de chuva (chuva de 1, 2, 3, 4, 5, 6 e 12h; chuva de 1, 2, 3, 5, 10, 15, 20, 25 e 30 dias; chuva média ponderada horária; chuva média ponderada diária). A saída dos modelos foi comparada com valores de umidade gravimétrica determinados por amostras coletadas em 26 pontos da bacia, distribuídos espacialmente na bacia, no período compreendido entre 15/01 e 10/08/2013. Neste período o teor de água no solo (umidade gravimétrica) variou entre 13,73 e 33,75%. Os resultados demonstram que é possível estimar o teor de água no solo, com distribuição espacial e temporal, com boa eficiência (NSverificação = 0,77), empregando dados topográficos da bacia, propriedades físicas do solo e dados de chuva. As informações climáticas, por outro lado, não afetam significativamente essa estimativa (NSv=0,28), podendo até diminuir a eficiência do modelo (NSv=0,77 para NSv=0,68). O emprego de muitas variáveis não gera necessariamente o melhor desempenho do modelo, pois uma variável pode mascarar a outra e, até mesmo, interferir a eficiência do modelo (NSv=0,70 e NS=0,61 para os modelos onde foram utilizadas 38 variáveis de entrada), além de aumentar o custo e o tempo para aquisição dessas variáveis, e a dificuldade de interpretação dos resultados em relação às várias entradas. Alternativamente, pode-se estimar o teor de água no solo utilizando modelos mais simplificados que empregam dados de chuva monitorados e informações extraídas de mapas (topografia e tipo de solo), mas o desempenho desses modelos é menor (NSv 0,66). A análise de importância das variáveis de entrada delimitou a tensão da água no solo e a chuva como as variáveis mais influentes nos modelos de melhor desempenho, e a densidade do solo como a menos importante. Nos modelos mais simples, a variável menos relevante é a declividade e a mais importante é a chuva. A análise de sensibilidade demonstrou que nem sempre os modelos conseguem reproduzir o que deveria ocorrer no ambiente natural.