Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Borges, Fábio Augusto Pires |
Orientador(a): |
Perondi, Eduardo André |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/165587
|
Resumo: |
No presente trabalho, é realizada a modelagem e identificação de um serovoposicionador hidráulico de uma bancada de testes. As expressões analíticas tradicionalmente utilizadas em uma estratégia em cascata aplicada ao controle de trajetória de posição são obtidas. A estratégia em questão utiliza, conjuntamente, a linearização por realimentação como lei de controle do subsistema hidráulico e a lei de controle de Slotine e Li no subsistema mecânico. Com base na mesma estratégia, um controlador em cascata neural é proposto. Em tal controlador, a função analítica que representa o mapa inverso, presente na linearização por realimentação, e a função de compensação de atrito utilizada na lei de Slotine e Li são substituídas por funções constituidas por meio de redes neurais de perceptrons de múltiplas camadas. Essas redes neurais têm como entradas os estados do sistema e também a temperatura do fluido hidráulico. O novo controlador é apresentado em uma versão onde as redes neurais são aplicadas sem modificações on-line e em outra, onde são apresentadas leis de controle adaptativo para as mesmas. A prova de estabilidade do sistema em malha fechada é apresentada em ambos os casos. Resultados experimentais do controle de seguimento de trajetórias de posição em diferentes temperaturas do fluido hidráulico são apresentados. Esses resultados demonstram a maior efetividade do controlador proposto em relação aos controladores clássicos PID e PID+feefforward e ao controlador em cascata com funções analíticas fixas. Os experimentos são realizados em duas situações: quando não ocorrem variações paramétricas importantes no sistema, onde é utilizado o controlador em cascata neural fixo e quando ocorrem essas variações, onde se utiliza o controlador em cascata neural adaptativo. |