Detalhes bibliográficos
Ano de defesa: |
1998 |
Autor(a) principal: |
Nunes, Giovanni da Silva |
Orientador(a): |
Ripoll, Jaime Bruck |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/127099
|
Resumo: |
Um resultado clássico em Geometria Diferencial, conhecido como teorema de Hadamard, e demonstrado pelo mesmo ([Ha]), estabelece que uma superfície conexa compacta no espaço Euclidiano cujas curvaturas principais são todas positivas é o bordo de um corpo convexo. Em part icular, a superfície é difeomorfa a uma esfera. Neste trabalho apresentamos extensões parciais deste teorema para imersões de codimensão arbitrária e para outros espaços ambientes que o E uclidiano conforme feito em [R]. |