Complexos elípticos e teoria de Hodge

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Antunes, Jonier Amaral
Orientador(a): Rocha, Luiz Fernando Carvalho da
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/55695
Resumo: Este trabalho apresenta os conceitos envolvidos na definição de um complexo elíptico sobre uma variedade compacta M e desenvolve a teoria de Hodge neste complexo. O principal resultado em questão é o teorema de Hodge. No caso mais simples, dados dois fibrados vetoriais E → M , F → M e um operador diferencial elíptico L : Γ(E) → Γ(F ), agindo nas seções destes fibrados, o teorema de Hodge garante que a dimensão de seu núcleo N(L) é finita e que podemos decompor Γ(E) = N(L) ⊕ Im(L∗), onde Im(L∗) é a imagem da adjunta de L. Para a demonstração apresentada aqui, são empregadas as propriedades dos espaços de Sobolev Hm(E) das seções de E. Certa ênfase é dada na obtenção de propriedades globais a partir de resultados locais.