O modelo de Timoshenko em vigas elásticas, estruturas offshore e nanotubos de carbono através da resposta fundamental de valor inicial

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Costa, Sânzara Nhiaia Jardim
Orientador(a): Ruiz Claeyssen, Julio Cesar
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/8208
Resumo: E desenvolvida a formulação newtoniana do modelo de Timoshenko para vigas elásticas, através da resposta fundamental, ou função de Green de valor inicial, e da análise modal. São feitas aplicações para o caso de plataformas off-shore e nanotecnologia. A derivação das equações governantes do modelo de Timo-shenko, considerando condições de contorno clássicas e não-clássicas, é feita segundo o princípio extendido de Hamilton. Realiza-se uma análise espectral no sistema de equações diferenciais parciais evolutivas de segunda ordem que governam os modelos, utilizando, na determinação das frequências naturais e autofunções, uma base gerada por uma resposta espacial fundamental. Esta resposta satisfaz um sistema não clássico de equações diferenciais ordinárias de segunda ordem, que inclui um operador diferencial de primeira ordem e um coeficiente de rigidez que depende não-linearmente da frequência natural. A solução analítica do problema é obtida utilizando-se uma fórmula que envolve a resolução de equações características de três tipos: algébrica, diferencial e em diferenças. O estudo de respostas dinâmicas e, em particular, respostas forçadas no domínio da frequência, é considerado para sistemas evolutivos de segunda ordem, com auxílio da formulaçãao do problema adjunto. A função matricial de transferência é calculada de maneira espectral e não-espectral. A caracterização de autovalores duplos acima de valores críticos da frequência para vigas livre-livre é reformulada matricialmente, em termos da base dinâmica. Respostas devido a excitações harmônicas e variadas condições iniciais são simuladas para vários tipos de vigas. Para o comportamento de estruturas flexíveis off-shore modeladas segundo as teorias de Euler-Bernoulli e de Rayleigh e a lei de Morison, é proposta uma extensão à teoria de Timoshenko. Os modos de vibração do modelo de Vlasov para nanotubos são determinados através de limite dos modos correspondentes ao modelo de Timoshenko. Simulações são realizadas para nanotubos de carbono.