Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Llerena, Jeffri Erwin Murrugarra |
Orientador(a): |
Jung, Claudio Rosito |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/252151
|
Resumo: |
O uso de termos de perda de localização baseados no Intersection-over-Union (IoU) é uma tendência recente e promissora para detecção de objetos. No entanto, explorar tais funções de perda para caixas delimitadoras orientadas é uma tarefa desafiadora, pois a IoU não é diferenciável. Neste trabalho, propomos representar regiões de objetos através de funções de densidade de probabilidade e definir uma métrica de similaridade entre dois objetos baseada na Distância de Hellinger que pode ser vista como uma IoU Probabilística (ProbIoU). Quando são usadas distribuições gaussianas (chamadas Gaussian Bounding Boxes, ou GBBs), o ProbIoU apresenta uma expressão de forma fechada diferenciável que pode ser usada como perda de localização para detecção de objetos. Apresentamos um esquema de mapeamento simples de caixas delimitadoras tradicionais para GBBs, permitindo que os termos de perda baseados em ProbIoU propostos sejam perfeitamente integrados a qualquer detector de objetos. Finalmente, mostramos que GBBs podem representar máscaras de segmentação genéricas e induzem uma representação binária natural como regiões elípticas (EGBBs) que aderem melhor às máscaras de segmentação do que caixas delimitadoras. Nossos resultados experimentais mostram que o termo de perda de localização proposto produz resultados competitivos para detecção de objetos usando caixas delimitadoras, e que EGBBs parecem uma alternativa melhor para segmentação de instâncias do que caixas delimitadoras. |