Metodologias de inserção de dados sob mecanismo de falta mnar para modelagem de teores em depósitos multivariados heterotópicos

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Silva, Camilla Zacché da
Orientador(a): Costa, Joao Felipe Coimbra Leite
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/178441
Resumo: Ao modelar-se depósitos minerais é comum enfrentarmos o problema de estimar múltiplos atributos possivelmente correlacionados, onde algumas variáveis são amostradas menos densamente do que outras. A falta de dados impõe um problema que requer atenção antes de qualquer modelagem subsequente. Precisamos, ao final, de modelos que sejam estatisticamente representativos. A maioria dos conjuntos de dados de problemas práticos são amostrados de maneira heterotópica e, para obter resultados coerentes, é preciso entender os motivos pelos quais alguns dados faltam e quais são os mecanismos que influenciaram a ausência de informações. A teoria de dados faltantes relaciona as amostras ausentes com aquelas medidas através de três mecanismos distintos: Faltante Completamente Aleatório (Missing Completely At Random - MCAR), Faltante Aleatório (Missing At Random - MAR) e Faltante Não Aleatório (Missing Not At Random - MNAR). O último mecanismo é extremamente complexo e a literatura recomenda ser tratado inicialmente como um mecanismo MAR. E após uma transformação fixa deve ser aplicada aos valores complementados para que estes se transformem em valores MNAR Embora existam métodos estatísticos clássicos para lidar com dados faltantes, tais abordagens ignoram a correlação espacial, uma característica que ocorre naturalmente em dados geológicos. A metodologia adequada para tratar com a falta de dados geológicos é a atualização bayesiana, em que se inserem valores sob mecanismo MAR considerando a correlação espacial. No presente estudo, a atualização bayesiana foi combinada com transformações fixas para tratar o mecanismo de falta de dados MNAR em dados geológicos. A transformação fixa aqui empregada é baseada no erro de inserção gerado em um cenário MAR no conjunto de dados. Assim, com o conjunto completo resultante foi utilizado em uma simulação sequencial gaussiana dos teores de uma base de dados multivariada, apresentando resultados satisfatórios, superiores aos obtidos por meio da cossimulação sequencial gaussiana, não inserindo qualquer viés no modelo final.