Detalhes bibliográficos
Ano de defesa: |
2002 |
Autor(a) principal: |
Moraes, Ines Ferreira |
Orientador(a): |
Ruiz Claeyssen, Julio Cesar |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/2630
|
Resumo: |
A resposta impulso é utilizada como ferramenta padrão no estudo direto de sistemas concentrados, discretos e distribuídos de ordem arbitrária. Esta abordagem leva ao desenvolvimento de uma plataforma unificada para a obtenção de respostas dinâmicas. Em particular, as respostas forçadas dos sistemas são decompostas na soma de uma resposta permanente e de uma resposta livre induzida pelos valores iniciais da resposta permanente. A teoria desenvolve-se de maneira geral e direta para sistemas de nésima ordem, introduzindo-se a base dinâmica gerada pela resposta impulso na forma padrão e normalizada, sem utilizar-se a formulação de estado, através da qual reduz-se um sistema de ordem superior para um sistema de primeira ordem. Considerou-se sistemas de primeira ordem a fim de acompanhar-se os muitos resultados apresentados na literatura através da formulação de espaço de estado. Os métodos para o cálculo da resposta impulso foram classificados em espectrais, não espectrais e numéricos. A ênfase é dada aos métodos não espectrais, pois a resposta impulso admite uma fórmula fechada que requer o uso de três equações características do tipo algébrica, diferencial e em diferenças. Realizou-se simulações numéricas onde foram apresentados modelos vibratórios clássicos e não clássicos. Os sistemas considerados foram sistemas do tipo concentrado, discreto e distribuído. Os resultados da decomposição da resposta dinâmica de sistemas concentrados diante de cargas harmônicas e não harmônicas foram apresentados em detalhe. A decomposição para o caso discreto foi desenvolvida utilizando-se os esquemas de integração numérica de Adams-Basforth, Strömer e Numerov. Para sistemas distribuídos, foi considerado o modelo de Euler-Bernoulli com força axial, sujeito a entradas oscilatórias com amplitude triangular, pulso e harmônica. As soluções permanentes foram calculadas com o uso da função de Green espacial. A resposta impulso foi aproximada com o uso do método espectral. |