Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Teixeira, Joel Antônio |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Viçosa
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.locus.ufv.br/handle/123456789/25013
|
Resumo: |
Neste trabalho estudamos a existência, unicidade e regularidade de solução ground state positiva para sistemas de Lane-Emden da forma: Lu = |v|p−1 v em Ω, Lv = |u|q−1 u em Ω, u, v = 0 em ∂Ω, onde n ≥ 3, Ω ⊂ Rn é um domínio suave e limitado, Lu = −Δu ou Lu = −Δu+u e p, q satisfazem p, q > 0 e 2 + >1− p+1 q+1 n (H1) e da forma: Lu = |v|p−1 v em Rn , Lv = |u|q−1 u em Rn , onde n ≥ 3, Lu = −Δu ou Lu = −Δu + u. No caso Lu = −Δu + u, temos que p, q satisfazem pq > 1 e (H1). E no caso Lu = −Δu, temos que p, q satisfazem p, q > 0 e 2 + =1− . p+1 q+1 n (H2) Fizemos também uma contribuição no sentido de estabelecer a existência de solução ground state para o seguinte sistema com peso: p−1 −Δu = |v| v em Ω, |x|β f (u) em Ω, −Δv = |x|α u, v = 0 sobre ∂Ω, onde n ≥ 4, α, β < n, Ω ⊂ Rn é um domínio suave, limitado e contendo a origem e f : R → R é uma função contínua. Palavras chaves: Sistemas elípticos, hipérbole crítica, existência de solução. |