Detalhes bibliográficos
Ano de defesa: |
2003 |
Autor(a) principal: |
Py, Monica Xavier |
Orientador(a): |
Diverio, Tiaraju Asmuz |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/3419
|
Resumo: |
Nos últimos 70 anos têm sido apresentadas várias propostas para caracteriza ção da noção intuitiva de computabilidade. O modelo de Computação mais conhecido para expressar a noção intuitiva de algoritmo é a Máquina de Turing. Esse trabalho apresenta máquinas abstratas que representam diferentes formas de comportamento computacional, sendo possível abordar a diversidade entre a Teoria da Computação Clássica (Máquina de Turing) e a Teoria da Computa- ção Interativa (Máquina de Turing Persistente). Com a evolução dos sistemas de computação, surgiu a necessidade de estender a de nição de Máquina de Turing para tratar uma diversidade de novas situações, esses problemas conduziram a uma mudança de paradigma. Neste contexto foi desenvolvido a Máquina de Turing Persistente, que é capaz de fundamentar a Teoria da Computação Interativa. Máquinas de Turing Persistentes (PeTM) são modelos que expressam comportamento interativo, esse modelo é uma extensão da Máquina de Turing. O presente trabalho tem como objetivo explorar paralelismo na Máquina de Turing Persistente, através da formalização de uma extensão paralela da PeTM e o estudo dos efeitos sobre essa extensão, variando o número de tas de trabalho. Contribui- ções desse trabalho incluem a de nição de uma máquina de Turing Persistente Paralela para modelar computação interativa e uma exposição de conceitos fundamentais e necessários para o entendimento desse novo paradigma. Os métodos e conceitos apresentados para formalização da computação na Máquina de Turing Persistente Paralela desenvolvidos nessa dissertação, podem servir como base para uma melhor compreensão da Teoria da Computação Interativa e da forma como o paralelismo pode ser especi cado em modelos teóricos. |