Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Alovisi, Gustavo |
Orientador(a): |
Ziegelmann, Flavio Augusto |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/253270
|
Resumo: |
Modelos de cópulas tornaram-se um método popular para a otimização de portfólios via Valor-em-Risco Condicional (CVaR). A abordagem de estimação normalmente é composta por dois passos: no primeiro, modelos ARMA-GARCH uni variados são utilizados para ajustar cada retorno dos ativos, enquanto que em um segundo passo, a estrutura de dependência do retorno dos ativos é modelada utilizando funções de cópulas. Com o aumento do número de ativos compondo um portfólio, a estimaçã de modelos tradicionais de cópulas dinâmicas torna-se computacionalmente onerosa. Neste trabalho, nossa contribuição principal é de utilizarmos modelos de cópulas fatoriais dinâmicas para encontrarmos um portfólio de alta dimensão ótimo no sentido de minimizar o seu CVaR. Cópulas fatoriais são capazes de lidar com a ”maldição da dimensionalidade” enquanto ainda oferecem um alto nível de complexidade e flexibilidade em seus modelos. Para introduzir variação temporal nos parâmetros de dependência das cópulas, utilizamos o modelo Generalizado de Scores Autoregressivos (GAS). Ainda, consideramos duas estruturas distintas de dependência: dependência homogênea e dependência em blocos. Utilizando dados de ações do Ibovespa de Janeiro de 2013 a Dezembro de 2020, aplicamos uma janela móvel de um dia para estimar ambos os modelos univariados e as funções de cópulas e também achar os pesos ótimos do portfólio para o dia seguinte. Os resultados empíricos sugerem que os modelos de cópulas fatoriais têm medidas de risco e retorno similares ou superiores em relação a um portfólio de uma cópula Gaussiana tradicional, sendo também consideravelmente superiores a dois portfólios de Markowitz de média-variância diferentes, um portfólio com pesos iguais para cada ativo e o índice IBRX50. |