Previsão do preço da Commodity do Butadieno a partir do uso de redes Bayesianas

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Aguiar, Sandra da Cruz Garcia do Espírito Santo
Orientador(a): Borenstein, Denis
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/127232
Resumo: As teorias que sustentam os modelos de precificação têm obtido resultados pouco satisfatórios ou insatisfatórios, uma vez que em cada estudo busca aproximar-se da realidade por apenas uma face, não observando o problema de todos os ângulos. Nesse sentido, percebeu-se um gap nos estudos de previsão, explorar sob outras lentes a dinâmica das variáveis do mercado que influenciam a formação do preço para o seu prévio monitoramento. Assim, o objetivo desta pesquisa foi construir uma ferramenta de apoio à decisão que pudesse prever, periodicamente, o preço futuro de uma commodity a curto e médio prazo, notadamente para o butadieno, um derivado do petróleo. Para que isto fosse possível, foi realizada a datação dos pontos de mudança do preço dessa commodity, frente aos acontecimentos históricos e, a partir daí, construído o estudo sobre três estruturas: mercado, política e econômica. A partir de então, observou-se quais seriam as variáveis mais consistentes para formar a base da pesquisa. As previsões obtidas revelam um desempenho superior às pesquisas anteriormente realizadas. Assim, a análise da previsão dos pontos de mudança constitui um instrumento informativo para sinalizar o comportamento futuro do preço da commodity do butadieno. A ferramenta utilizada para o modelo de precificação de modo a compreender a natureza das flutuações foram as Redes Bayesianas, que apresentam a capacidade de expressar as probabilidades e de um conjunto de variáveis aleatórias previamente definidas, e fazer predições adequadas. A inferência sobre o preço da commodity do butadieno, a curto e médio prazo, é realizada com o auxílio do software GeNIe 2.0. Conclui-se que investir em pesquisas que utilizem de Inteligência Artificial como métodos preditivos, como a utilização de Redes Bayesianas apresenta a vantagem de compreender a relação causa e efeito através da análise de Cenários. Assim, o objetivo de construir uma ferramenta de apoio à decisão que pudesse prever, periodicamente, o preço do butadieno a curto e médio prazo, foi alcançado. Para determinado período houve 84% de chances de acerto nas previsões.