Modelagem ecossistêmica de risco e de qualidade das dunas costeiras do sul do Brasil, Uruguai e norte da Argentina

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Müller Neto, José Augusto
Orientador(a): Mendes Junior, Cláudio Wilson, Silva, Tatiana Silva da
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/272050
Resumo: Este estudo investigou a aplicação dos modelos HQA (Habitat Quality Assessment) e HRA (Habitat Risk Assessment) desenvolvidos pelo Natural Capital Project para avaliar a disrupção de processos bióticos e o risco ecossistêmico em dunas costeiras em estados brasileiros e países vizinhos. Utilizando técnicas de Sensoriamento Remoto e Geoprocessamento, o estudo teve como objetivo principal propor metodologia para avaliação de risco da Lista Vermelha de Ecossistemas Ameaçados (RLE) da União Internacional de Conservação da Natureza (IUCN). Os resultados evidenciam que os modelos HQA e HRA podem ser utilizados como indicadores de disrupção de processos bióticos e risco ecossistêmico. As avaliações revelaram informações inéditas sobre a qualidade ambiental de dunas costeiras sul- americanas, demonstrando sua aplicabilidade para gestão e conservação. Enquanto o HQA se mostrou adequado para avaliar o impacto na biodiversidade, o HRA se destacou em avaliações abrangentes de risco. As classificações do HRA e do HQA foram compatíveis com os critérios da IUCN, fortalecendo a possibilidade de emprego desses modelos para avaliações preliminares em que não haja condições de aplicação da metodologia. Conclui-se que os modelos HQA e HRA são instrumentos robustos para avaliar o risco ecossistêmico, fornecendo percepções valiosas que podem ser usadas para a tomada de decisões, elaboração de políticas públicas e aumento do conhecimento. estudo recomenda a consideração de sub-regiões menores e o refinamento das classes do HQA para futuras análises mais precisas. A inclusão de bases de dados com maior grau de confiança também é sugerida para aprimorar a precisão dos resultados.