Modelo computacional paralelo para a hidrodinâmica e para o transporte de substâncias bidimensional e tridimensional

Detalhes bibliográficos
Ano de defesa: 2002
Autor(a) principal: Rizzi, Rogerio Luis
Orientador(a): Diverio, Tiaraju Asmuz
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/10416
Resumo: Neste trabalho desenvolveu-se e implementou-se um modelo computacional paralelo multifísica para a simulação do transporte de substâncias e do escoamento hidrodinâmico, bidimensional (2D) e tridimensional (3D), em corpos de água. Sua motivação está centrada no fato de que as margens e zonas costeiras de rios, lagos, estuários, mares e oceanos são locais de aglomerações de seres humanos, dada a sua importância para as atividades econômica, de transporte e de lazer, causando desequilíbrios a esses ecossistemas. Esse fato impulsiona o desenvolvimento de pesquisas relativas a esta temática. Portanto, o objetivo deste trabalho é o de construir um modelo computacional com alta qualidade numérica, que possibilite simular os comportamentos da hidrodinâmica e do transporte escalar de substâncias em corpos de água com complexa configuração geométrica, visando a contribuir para seu manejo racional. Visto que a ênfase nessa tese são os aspectos numéricos e computacionais dos algoritmos, analisaram-se as características e propriedades numérico-computacionais que as soluções devem contemplar, tais como a estabilidade, a monotonicidade, a positividade e a conservação da massa. As estratégias de soluções enfocam os termos advectivos e difusivos, horizontais e verticais, da equação do transporte. Desse modo, a advecção horizontal é resolvida empregando o método da limitação dos fluxos de Sweby, e o transporte vertical (advecção e difusão) é resolvido com os métodos beta de Gross e de Crank-Nicolson. São empregadas malhas com distintas resoluções para a solução do problema multifísica. O esquema numérico resultante é semi-implícito, computacionalmente eficiente, estável e fornece acurácia espacial e temporal de segunda ordem. Os sistemas de equações resultantes da discretização, em diferenças finitas, das equações do escoamento e do transporte 3D, são de grande porte, lineares, esparsos e simétricos definidos-positivos (SDP). No caso 2D os sistemas são lineares, mas os sistemas de equações para a equação do transporte não são simétricos. Assim, para a solução de sistemas de equações SDP e dos sistemas não simétricos empregam-se, respectivamente, os métodos do subespaço de Krylov do gradiente conjugado e do resíduo mínimo generalizado. No caso da solução dos sistemas 3-diagonal, utiliza-se o algoritmo de Thomas e o algoritmo de Cholesky. A solução paralela foi obtida sob duas abordagens. A decomposição ou particionamento de dados, onde as operações e os dados são distribuídos entre os processos disponíveis e são resolvidos em paralelo. E, a decomposição de domínio, onde obtém-se a solução do problema global combinando as soluções de subproblemas locais. Em particular, emprega-se neste trabalho, o método de decomposição de domínio aditivo de Schwarz, como método de solução, e como pré-condicionador. Para maximizar a relação computação/comunicação, visto que a eficiência computacional da solução paralela depende diretamente do balanceamento de carga e da minimização da comunicação entre os processos, empregou-se algoritmos de particionamento de grafos para obter localmente os subproblemas, ou as partes dos dados. O modelo computacional paralelo resultante mostrou-se computacionalmente eficiente e com alta qualidade numérica.