Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Nós, Rudimar Luiz |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-08052007-143200/
|
Resumo: |
Este é o primeiro trabalho que apresenta simulações tridimensionais completamente adaptativas de um modelo de campo de fase para um fluido incompressível com densidade de massa constante e viscosidade variável, conhecido como Modelo H. Solucionando numericamente as equações desse modelo em malhas refinadas localmente com a técnica AMR, simulamos computacionalmente escoamentos bifásicos tridimensionais. Os modelos de campo de fase oferecem uma aproximação física sistemática para investigar fenômenos que envolvem sistemas multifásicos complexos, tais como fluidos com camadas de mistura, a separação de fases sob forças de cisalhamento e a evolução de micro-estruturas durante processos de solidificação. Como as interfaces são substituídas por delgadas regiões de transição (interfaces difusivas), as simulações de campo de fase requerem muita resolução nessas regiões para capturar corretamente a física do problema em estudo. Porém essa não é uma tarefa fácil de ser executada numericamente. As equações que caracterizam o modelo de campo de fase contêm derivadas de ordem elevada e intrincados termos não lineares, o que exige uma estratégia numérica eficiente capaz de fornecer precisão tanto no tempo quanto no espaço, especialmente em três dimensões. Para obter a resolução exigida no tempo, usamos uma discretização semi-implícita de segunda ordem para solucionar as equações acopladas de Cahn-Hilliard e Navier-Stokes (Modelo H). Para resolver adequadamente as escalas físicas relevantes no espaço, utilizamos malhas refinadas localmente que se adaptam dinamicamente para recobrir as regiões de interesse do escoamento, como por exemplo, as vizinhanças das interfaces do fluido. Demonstramos a eficiência e a robustez de nossa metodologia com simulações que incluem a separação dos componentes de uma mistura bifásica, a deformação de gotas sob cisalhamento e as instabilidades de Kelvin-Helmholtz. |