An approach for analyzing and classifying microarray data using gene co-expression networks cycles

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Dillenburg, Fabiane Cristine
Orientador(a): Ribeiro, Leila
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
GBM
Link de acesso: http://hdl.handle.net/10183/171353
Resumo: Uma das principais áreas de pesquisa em Biologia de Sistemas refere-se à descoberta de redes biológicas a partir de conjuntos de dados de microarrays. Estas redes consistem de um grande número de genes cujos níveis de expressão afetam os outros genes de vários modos. Nesta tese, apresenta-se uma nova maneira de analisar os conjuntos de dados de microarrays, com base nos diferentes tipos de ciclos encontrados entre os genes das redes de co-expressão construídas com dados quantificados obtidos a partir dos microarrays. A entrada do método de análise é formada pelos dados brutos, um conjunto de genes de interesse (por exemplo, genes de uma via conhecida) e uma função (ativador ou inibidor) destes genes. A saída do método é um conjunto de ciclos. Um ciclo é um caminho fechado com todos os vértices (exceto o primeiro e o último) distintos. Graças à nova forma de encontrar relações entre os genes, é possível uma interpretação mais robusta das correlações dos genes, porque os ciclos estão associados a mecanismos de feedback, que são muito comuns em redes biológicas. A hipótese é que feedbacks negativos permitem encontrar relações entre os genes que podem ajudar a explicar a estabilidade do processo regulatório dentro da célula. Ciclos de feedback positivo, por outro lado, podem mostrar a quantidade de desequilíbrio de uma determinada célula em um determinado momento. A análise baseada em ciclos permite identificar a relação estequiométrica entre os genes da rede. Esta metodologia proporciona uma melhor compreensão da biologia do tumor. Portanto, as principais contribuições desta tese são: (i) um novo método de análise baseada em ciclos; (ii) um novo método de classificação; (iii) e, finalmente, aplicação dos métodos e a obtenção de resultados práticos. A metodologia proposta foi utilizada para analisar os genes de quatro redes fortemente relacionadas com o câncer - apoptose, glicólise, ciclo celular e NF B - em tecidos do tipo mais agressivo de tumor cerebral (Gliobastoma multiforme - GBM) e em tecidos cerebrais saudáveis. A maioria dos pacientes com GBM morrem em menos de um ano, essencialmente nenhum paciente tem sobrevivência a longo prazo, por isso estes tumores têm atraído atenção significativa. Os principais resultados nesta tese mostram que a relação estequiométrica entre genes envolvidos na apoptose, glicólise, ciclo celular e NF B está desequilibrada em amostras de GBM em comparação as amostras de controle. Este desequilíbrio pode ser medido e explicado pela identificação de um percentual maior de ciclos positivos nas redes das primeiras amostras. Esta conclusão ajuda a entender mais sobre a biologia deste tipo de tumor. O método de classificação baseado no ciclo proposto obteve as mesmas métricas de desempenho como uma rede neural, um método clássico de classificação. No entanto, o método proposto tem uma vantagem significativa em relação às redes neurais. O método de classificação proposto não só classifica as amostras, fornecendo diagnóstico, mas também explica porque as amostras foram classificadas de uma certa maneira em termos dos mecanismos de feedback que estão presentes/ausentes. Desta forma, o método fornece dicas para bioquímicos sobre possíveis experiências laboratoriais, bem como sobre potenciais genes alvo de terapias.