Usando redes neurais para estimação da volatilidade : redes neurais e modelo híbrido GARCH aumentado por redes neurais

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Oliveira, André Barbosa
Orientador(a): Ziegelmann, Flavio Augusto
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/25787
Resumo: As séries temporais financeiras são marcadas por comportamentos complexos e não-lineares. No mercado financeiro, além da trajetória das cotações, a sua variabilidade, representada pela volatilidade, consiste em importante informação para o mercado. Redes neurais são modelos não lineares flexíveis com capacidade de descrever funções de distintas classes, possuindo a propriedade de aproximadores universais. Este trabalho busca empregar redes neurais, especificamente Perceptron de múltiplas camadas com uma única camada escondida alimentada para frente (Feedforward Multilayer Perceptron), para a previsão da volatilidade. Mais ainda, é proposto um modelo híbrido que combina o modelo GARCH e redes neurais. Os modelos GARCH e redes neurais são estimados para duas séries financeiras: Índice S&P500 e cotações do petróleo tipo Brent. Os resultados indicam que a volatilidade aproximada por redes neurais é muito semelhante as estimativas dos tradicionais modelos GARCH. Suas diferenças são mais qualitativas, na forma de resposta da volatilidade estimada a choques de maior magnitude e sua suavidade, do que quantitativas, apresentando critérios de erros de previsão em relação a uma medida de volatilidade benchmark muito próximos.