SYMARFIMA : um novo modelo dinâmico condicionalmente simétrico para séries temporais com estrutura de longa dependência

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Benaduce, Helen da Silva Costa
Orientador(a): Pumi, Guilherme
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/237726
Resumo: Neste trabalho, introduzimos uma classe de modelos com distribuição condicional simétrica para dados de séries temporais com estrutura de longa dependência condicional, denominada modelo SYMARFIMA. No modelo proposto, a média condicional segue uma especificação ARFIMA(p, d, q), definida para acomodar uma estrutura de longa dependência, podendo ainda incluir um conjunto de covariáveis exógenas (aleatórias ou determinísticas) dependendo do tempo. A estimação dos parâmetros deste modelo é feita através do método de máxima verossimilhança parcial. Obtivemos condições de existência e estacionariedade para o modelo proposto. Obtivemos ainda a média incondicional, variância, estrutura de covariância e fórmulas fechadas para o vetor de escore e a matriz da informação de Fisher. Obtemos as propriedades assintóticas do estimador baseado em máxima verossimilhança parcial e estudamos testes de hipóteses, intervalos de confiança e previsão no contexto do modelo proposto. Além disso, é realizado a Simulação de Monte Carlo para estudar o comportamento do estimador em amostras finitas, bem como uma aplicação para dados reais.