Estimativa da produtividade do algodoeiro a partir de índices de vegetação derivados de imagens orbitais de alta resolução espacial

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Oliveira, Riene Figueiras de
Orientador(a): Mendes Junior, Claudio Wilson
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/201710
Resumo: O Brasil é o sexto maior produtor mundial de algodão, que é um cultivo de grande relevância para o agronegócio. A utilização de dados do Sensoriamento Remoto orbital vem ganhando destaque para o monitoramento dessa cultura. No algodão, é crescente a necessidade de estimativas de safra confiáveis para o planejamento adequado das unidades produtoras, entidades de classe e governo. Neste contexto, esta dissertação tem por objetivo principal estimar a produtividade do algodoeiro por meio de índices espectrais de vegetação, derivados de imagens MSI - Sentinel 2. Este estudo foi realizado em três talhões de algodão (C-01, D-07, E-01) em uma Unidade de Produção (UP) com 612 hectares, localizada no município de Nova Mutum-MT. Quatro imagens do sensor MSI foram utilizadas para a caracterização da resposta espectral do dossel do algodoeiro, entre o período de início da floração e da frutificação completa do algodão, referente às datas 17/abr, 07/mai, 27/mai e 16/jun de 2018. Foi feita a correção atmosférica das imagens MSI das bandas espectrais do Visível (RGB), Infravermelho Próximo (IVP) e Red Edge (RE) para seu uso no cálculo de 23 índices de vegetação (IVs). Foram também avaliados os dados espectrais na forma acumulada, ou seja, somando-se os valores das quatro imagens de IVs. Foram aplicados métodos estatísticos de regressão linear e polinomial quadrática entre os dados de IVs derivados das imagens MSI e de dados de produtividade de três talhões de algodão, obtidos por meio de um sensor instalado numa colhedora John Deere 7760. As equações de regressão foram geradas a partir de 70% dos dados observados e o restante dos dados (30%) serviram para validar o modelo gerado. Os resultados foram avaliados pelo nível de significância, coeficiente de determinação (R²), pela Raiz do Erro Quadrático Médio (RMSE), e pelo Erro Médio Absoluto (MAE), entre os dados de produtividade observada e estimada. Os índices SAVI e RGBVI foram os que melhor explicaram a produtividade do algodoeiro, com coeficiente de determinação de R2 = 0,62 e 0,64, respectivamente, no talhão E-01 para a imagem de 16/jun. Entretanto, o índice RGBVI obteve os menores valores do RMSE e MAE, demonstrando sua maior potencialidade para estimar a produtividade de algodão.