Atlantic : a framework for anomaly traffic detection, classification, and mitigation in SDN

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Silva, Anderson Santos da
Orientador(a): Schaeffer Filho, Alberto Egon
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/148594
Resumo: Software-Defined Networking (SDN) objetiva aliviar as limitações impostas por redes IP tradicionais dissociando tarefas de rede executadas em cada dispositivo em planos específicos. Esta abordagem oferece vários benefícios, tais como a possibilidade de uso de protocolos de comunicação padrão, funções de rede centralizadas, e elementos de rede mais específicos e modulares, tais como controladores de rede. Apesar destes benefícios, ainda há uma falta de apoio adequado para a realização de tarefas relacionadas à classificação de tráfego, pois (i) as características de fluxo nativas disponíveis no protocolo OpenFlow, tais como contadores de bytes e pacotes, não oferecem informação suficiente para distinguir de forma precisa fluxos específicos; (ii) existe uma falta de suporte para determinar qual é o conjunto ótimo de características de fluxo para caracterizar um dado perfil de tráfego; (iii) existe uma necessidade de estratégias flexíveis para compor diferentes mecanismos relacionados à detecção, classificação e mitigação de anomalias de rede usando abstrações de software; (iv) existe uma necessidade de monitoramento de tráfego em tempo real usando técnicas leves e de baixo custo; (v) não existe um framework capaz de gerenciar detecção, classificação e mitigação de anomalias de uma forma coordenada considerando todas as demandas acima. Adicionalmente, é sabido que mecanismos de detecção e classificação de anomalias de tráfego precisam ser flexíveis e fáceis de administrar, a fim de detectar o crescente espectro de anomalias. Detecção e classificação são tarefas difíceis por causa de várias razões, incluindo a necessidade de obter uma visão precisa e abrangente da rede, a capacidade de detectar a ocorrência de novos tipos de ataque, e a necessidade de lidar com erros de classificação. Nesta dissertação, argumentamos que SDN oferece ambientes propícios para a concepção e implementação de esquemas mais robustos e extensíveis para detecção e classificação de anomalias. Diferentemente de outras abordagens na literatura relacionada, que abordam individualmente detecção ou classificação ou mitigação de anomalias, apresentamos um framework para o gerenciamento e orquestração dessas tarefas em conjunto. O framework proposto é denominado ATLANTIC e combina o uso de técnicas com baixo custo computacional para monitorar tráfego e técnicas mais computacionalmente intensivas, porém precisas, para classificar os fluxos de tráfego. Como resultado, ATLANTIC é um framework flexível capaz de categorizar anomalias de tráfego utilizando informações coletadas da rede para lidar com cada perfil de tráfego de um modo específico, como por exemplo, bloqueando fluxos maliciosos.