Uma coleção de resultados sobre números normais

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Mengue, Jairo Krás
Orientador(a): Ripoll, Cydara Cavedon
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/13094
Resumo: Entre os mais conhecidos estudos de probabilidades aplicados a teoria dos números, encontra-se o conceito de normalidade. Neste trabalho apresentamos uma coleção de resultados clássicos da teoria dos números normais, incluindo as provas da normalidade da Constante de Champernowne e da Constante de Copeland-Erdos. Listamos tamb em algumas aplicações obtidas da conexão desta teoria com a das sequências equidistribu das módulo um, estudadas em sistemas dinâmicos. Entre elas, vamos provar o resultado conhecido por critério de normalidade devido a Pjateckii-Sapiro. Al em disso, apresentamos um estudo que desenvolvemos sobre translações que preservam a normalidade, introduzindo o conceito de número determinado. Provamos aqui, independentemente, uma versão mais fraca de um resultado devido a Rauzy que caracterizou o conjunto dos números com os quais podemos formar translações que preservam a normalidade.