Polimorfismo CAG e GGC do receptor de androgênios e a expressão de correguladores em homens com câncer de próstata e hiperplasia prostática benigna

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Biolchi, Vanderlei
Orientador(a): Brum, Ilma Simoni
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/26882
Resumo: Introdução. O câncer de próstata (CaP) é o mais comum em homens nos Estados Unidos. Em 2010, formam estimados 192.280 novos casos de CaP e 27.360 mortes nos Estados Unidos. A incidência estimada de CaP no Brasil é de 52.350 novos casos em 2010, principalmente na região sul. A hiperplasia prostática benigna (HPB) é uma anormalidade proliferativa associada à idade em homens. A prevalência de HPB é em torno de 14% entre 40 e 50 anos e 43% acima de 60 anos. A patogênese do desenvolvimento tumoral tem sido associada com a ação dos hormônios esteróides. Os efeitos dos androgênios são mediados pela testosterona e pela dihidrotestosterona (DHT) nas células alvo. Suas ações têm sido demonstradas na morfogênese, diferenciação, proliferação e secreção da glândula prostática. A ligação do androgênio promove a ativação do receptor de androgênio (AR), recrutamento de cofatores, promovendo a transcrição dos genes alvos hormônio-dependentes. Numerosos correguladores do AR têm sido descritos como sendo essenciais para a ativação do AR durante a progressão da doença. SHP, FHL2 e o complexo P160 (SRC1, GRIP1 e AIB1) parecem ser importantes correguladores do AR. O polimorfismo CAG e GGC do AR pode alterar a transcrição dos genes responsivos aos androgênios e, potencialmente, atuar no desenvolvimento da HPB e do CaP. Objetivo. 1. Investigar a associação entre o número de repetições CAG e GGC do AR, os níveis de testosterona e a chance de desenvolver CaP ou HPB em nossa população. 2. Investigar a expressão de SHP, FHL2, do complexo P160 e do AR em tecidos HPB, CaP e ZPU (zona periuretral proveniente das amostras CaP). Materiais e Métodos. Foram analisados 344 pacientes oriundos do Hospital de Clínicas de Porto Alegre, sendo 130 CaP, 126 HPB e 88 controles, para analisar o polimorfismo CAG e GGC. O DNA foi extraído a partir do sangue periférico e o gene do AR foi analisado através de análise de fragmento. Cento e dois pacientes submetidos à cirurgia foram utilizados para avaliar as expressões gênicas. Foram avaliados 36 HPB, 66 CaP e 33 ZPU. O RNA foi extraído e as expressões gênicas foram analisadas por PCR em tempo real. Os protocolos e os termos de consentimento foram aprovados pelo comitê de ética local e nacional. Resultados. As médias do número de repetições CAG e GGC foram semelhantes entre os grupos CaP, HPB e controles. A chance de desenvolver CaP nos indivíduos que possuem um longo alelo para o polimorfismo GGC (GGC > 18 e GGC >19) é de 1,96 e 3,30 vezes maior do que o alelo curto (GGC ≤ 18 e GGC ≤ 19) (p=0,035 e p=0,007), respectivamente. A chance de desenvolver HPB em indivíduos que possuem o alelo longo para o polimorfismo GGC (GGC > 18) é 2,33 vezes maior (p=0,008) do que o alelo curto (GGC ≤ 18). O risco de desenvolver CaP e HPB em pacientes com a testosterona total < 4ng/mL foram de 2,80 (P=0,005) e 2,78 vezes maior (P=0,002), respectivamente, comparado com os pacientes com testosterona total > 4ng/mL. Os níveis séricos de testosterona total em pacientes com GGC > 19 foram significativamente menor comparados com pacientes com GGC ≤ 19 (P=0,001). A expressão gênica de AR foi maior no grupo ZPU e CaP em relação ao grupo HPB (P=0,033 e P<0.001, respectivamente). A expressão de SHP foi maior no grupo CaP comparado com o HPB (P=0,039). A expressão de FHL2 foi maior no grupo ZPU comparado com o CaP e HPB (P<0.001 e P=0.007, respectivamente). Dos genes que formam o complexo P160, a expressão de SRC1 foi maior no grupo ZPU comparado com o CaP (P<0.001) e HPB (P=0,005). GRIP1 foi mais expresso nos grupos CaP e ZPU em relação ao grupo HPB (P<0,001 e P=0.006, respectivamente) e a expressão de AIB1 foi maior nos grupos CaP e ZPU comparados ao grupo HPB (P=0,030 e P=0.001, respectivamente). A expressão protéica de FHL2 foi maior no grupo CaP comparado com o grupo HPB (P=0.023). As análises moleculares de AR, GRIP1 e AIB1, monstraram melhores parâmetros diagnósticos do que a análise dos níveis séricos de PSA. Conclusões. A presença de um número de repetições GGC>18 e GGC>19 do AR foi associada com o aumento da chance de desenvolver CaP. As repetições de GGC>18 também foram associadas com a chance de desenvolver HPB. Níveis baixos de testosterona sérica foram encontrados nos grupos CaP e HPB comparados com os controles. Baixos níveis de testosterona podem aumentar a chance de desenvolver CaP e HPB. Este estudo demonstra a participação dos genes AR, SHP, FHL2 e do complexo P160 no aumento de proliferação da glândula prostática. AR, FHL2, SRC1, GRIP1 e AIB1 poderão ser uma boa alternativa para acompanhar os pacientes que possuem níveis elevados de PSA, toque alterado e biópsia negativa.