Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Holanda, Priscila Cavalcante |
Orientador(a): |
Reis, Ricardo Augusto da Luz |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/169343
|
Resumo: |
Redes Neurais têm sido um tema de pesquisas por pelo menos sessenta anos. Desde a eficácia no processamento de informações à incrível capacidade de tolerar falhas, são incontáveis os mecanismos no cérebro que nos fascinam. Assim, não é nenhuma surpresa que, na medida que tecnologias facilitadoras tornam-se disponíveis, cientistas e engenheiros têm aumentado os esforços para o compreender e simular. Em uma abordagem semelhante à do Projeto Genoma Humano, a busca por tecnologias inovadoras na área deu origem a projetos internacionais que custam bilhões de dólares, o que alguns denominam o despertar global de pesquisa da neurociência. Avanços em hardware fizeram a simulação de milhões ou até bilhões de neurônios possível. No entanto, as abordagens existentes ainda não são capazes de fornecer a densidade de conexões necessária ao enorme número de neurônios e sinapses. Neste sentido, este trabalho propõe DHyANA (Arquitetura Digital Neuromórfica Hierárquica), uma nova arquitetura em hardware para redes neurais pulsadas, a qual utiliza comunicação em rede-em-chip hierárquica. A arquitetura é otimizada para implementações de Máquinas de Estado Líquido. A arquitetura DHyANA foi exaustivamente testada em plataformas de simulação, bem como implementada em uma FPGA Stratix IV da Altera. Além disso, foi realizada a síntese lógica em tecnologia 65nm, a fim de melhor avaliar e comparar o sistema resultante com projetos similares, alcançando uma área de 0,23mm2 e potência de 147mW para uma implementação de 256 neurônios. |