Novo método iterativo de localização da câmera baseado no conceito de resection-intersection

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Alves, Thiago Waszak
Orientador(a): Susin, Altamiro Amadeu
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/234983
Resumo: A Odometria Visual é o processo de estimar o movimento de um ente a partir de duas ou mais imagens fornecidas por uma ou mais câmeras. É uma técnica de grande importância na visão computacional, com aplicações em diversas áreas tais como assistência ao motorista e navegação de veículos autônomos, sistemas de realidade aumentada, veículos autônomos não-tripulados (VANTs) e até mesmo na exploração interplanetária. Os mé- todos mais comuns de Odometria Visual utilizam câmeras com visão estéreo, através das quais é possível calcular diretamente as informações de profundidade de detalhes de uma cena, o que permite estimar as posições sucessivas das câmeras. A Odometria Visual Monocular estima o deslocamento de um objeto com base nas imagens fornecidas por uma única câmera, o que oferece vantagens construtivas e operacionais embora exija processamento mais complexo. Os sistemas de Odometria Visual Monocular do tipo esparsos estimam a pose da câmera a partir de singularidades detectadas nas imagens, o que reduz significativamente o poder de processamento necessário, sendo assim ideal para aplicações de tempo real. Nessa óptica, este trabalho apresenta um novo sistema de Odometria Visual Monocular esparsa para tempo real, validado em veículo instrumentado. O novo sistema é baseado no conceito de Resection-Intersection, combinado com um novo teste de convergência, e um método de refinamento iterativo para minimizar os erros de reproje- ção. O sistema foi projetado para ser capaz de utilizar diferentes algoritmos de otimização não linear, tais como Gauss-Newton, Levenberg-Marquardt, Davidon-Fletcher-Powell ou Broyden–Fletcher–Goldfarb–Shannon. Utilizando o benchmark KITTI, o sistema proposto obteve um erro de translação em relação à distância média percorrida de 0, 86% e erro médio de rotação em relação à distância média percorrida de 0.0024◦/m. O sistema foi desenvolvido em Python em uma única thread, foi embarcado em uma placa Raspberry Pi 4B e obteve um tempo médio de processamento de 775ms por imagem para os onze primeiros cenários do benchmark. O desempenho obtido neste trabalho supera os resultados de outros sistemas de Odometria Visual Monocular baseados no conceito de ResectionIntersection até o momento submetidos na classificação do benchmark KITTI.