Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Pereira, Ana Rita |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/18/18153/tde-11092017-095254/
|
Resumo: |
The purpose of this project is to implement, analyze and compare visual odometry approaches to help the localization task in autonomous vehicles. The stereo visual odometry algorithm Libviso2 is compared with a proposed omnidirectional multi-camera approach. The proposed method consists of performing monocular visual odometry on all cameras individually and selecting the best estimate through a voting scheme involving all cameras. The omnidirectionality of the vision system allows the part of the surroundings richest in features to be used in the relative pose estimation. Experiments are carried out using cameras Bumblebee XB3 and Ladybug 2, fixed on the roof of a vehicle. The voting process of the proposed omnidirectional multi-camera method leads to some improvements relatively to the individual monocular estimates. However, stereo visual odometry provides considerably more accurate results. |