Modeling and simulation of device variability and reliability at the electrical level

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Brusamarello, Lucas
Orientador(a): Wirth, Gilson Inacio
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/65634
Resumo: O efeito das variações intrínsecas afetando parâmetros elétricos de circuitos fabricados com tecnologia CMOS de escala nanométrica apresenta novos desafios para o yield de circuitos integrados. Este trabalho apresenta modelos para representar variações físicas que afetam transistores projetados em escala sub-micrônica e metodologias computacionalmente eficientes para simular estes dispositivos utilizando ferramentas de Electronic Design Automation (EDA). O trabalho apresenta uma investigação sobre o estado-da-arte de modelos para variabilidade em nível de simulação de transistor. Modelos de variações no processo de fabricação (RDF, LER, etc) e confiabilidade (NBTI, RTS, etc) são investigados e um novo modelo estatístico para a simulação de Random Telegraph Signal (RTS) e Bias Temperature Instability (BTI) para circuitos digitais é proposta. A partir desses modelos de dispositivo, o trabalho propõe modelos eficientes para analisar a propagação desses fenômenos para o nível de circuito através de simulação. As simulações focam no impacto de variabilidade em três diferentes aspectos do projeto de circuitos integrados digitais: caracterização de biblioteca de células, análise de violações de tempo de hold e células SRAM. Monte Carlo é a técnica mais conhecida e mais simples para simular o impacto da variabilidade para o nível elétrico do circuito. Este trabalho emprega Monte Carlo para a análise do skew em redes de distribuição do sinal de relógio e em caracterização de células SRAM considerando RTS. Contudo, simulações Monte Carlo exigem tempo de execução elevado. A fim de acelerar a análise do impacto de variabilidade em biblioteca de células este trabalho apresenta duas alternativas aMonte Carlo: 1) propagação de erros usando aproximação linear de primeira ordem e 2)Metodologia de Superfície de Resposta (RSM). As técnicas são validados usando circuitos de nível comercial, como a rede de clock de um chip comercial utilizando a tecnologia de 90nm e uma biblioteca de células usando um nó tecnológico de 32nm.