Métodos de imputação de dados aplicados na área da saúde

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Nunes, Luciana Neves
Orientador(a): Fachel, Jandyra Maria Guimarães
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/11422
Resumo: Em pesquisas da área da saúde é muito comum que o pesquisador defronte-se com o problema de dados faltantes. Nessa situação, é freqüente que a decisão do pesquisador seja desconsiderar os sujeitos que tenham não-resposta em alguma ou algumas das variáveis, pois muitas das técnicas estatísticas foram desenvolvidas para analisar dados completos. Entretanto, essa exclusão de sujeitos pode gerar inferências que não são válidas, principalmente se os indivíduos que permanecem na análise são diferentes daqueles que foram excluídos. Nas duas últimas décadas, métodos de imputação de dados foram desenvolvidos com a intenção de se encontrar solução para esse problema. Esses métodos usam como base a idéia de preencher os dados faltantes com valores plausíveis. O método mais complexo de imputação é a chamada imputação múltipla. Essa tese tem por objetivo divulgar o método de imputação múltipla e através de dois artigos procura atingir esse objetivo. O primeiro artigo descreve duas técnicas de imputação múltipla e as aplica a um conjunto de dados reais. O segundo artigo faz a comparação do método de imputação múltipla com duas técnicas de imputação única através de uma aplicação a um modelo de risco para mortalidade cirúrgica. Para as aplicações foram usados dados secundários já utilizados por Klück (2004).