Imputation by decomposition and by time series nature : novel imputation methods for missing data in time series
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Minas Gerais
Brasil ENG - DEPARTAMENTO DE ENGENHARIA ELÉTRICA Programa de Pós-Graduação em Engenharia Elétrica UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/46099 https://orcid.org/0000-0002-6754-4374 |
Resumo: | Um passo importante, porém muitas vezes negligenciado, durante a análise de dados de séries temporais é a imputação de dados ausentes. Nessa dissertação, as características de séries temporais e mecanismos de perda são descritos para ajudar na identificação de qual método de imputação deve ser utilizado para imputar dados ausentes, juntamente com uma revisão bibliográfica de métodos de imputação e seu funcionamento. Os métodos de imputação recomendados pela literatura são utilizados para imputar dados sintéticos com diferentes características e os resultados são discutidos. Dois novos métodos de imputação de séries temporais são apresentados e comparados com métodos de imputação clássicos e métodos do estado-da-arte. O primeiro método de imputação apresentado é o de Imputação pelo Padrão. Esse método se baseia na premissa que utilizando-se o método de imputação recomendado pela literatura para cada padrão de série temporal se obterá os melhores resultados. Heurísticas de separação das séries temporais por padrão foram desenvolvidas. O segundo método apresentado é o de Imputação por Decomposição. Esse método consiste em decompor a série temporal e depois imputar cada um de seus componentes pelos métodos recomendados pela literatura. As combinações desses métodos e o filtro de Kalman também foram testados. Os métodos de imputação discutidos são utilizados para imputar dados de índices financeiros e rastreadores de instabilidade, dados sobre a COVID-19 e dados sobre a dengue. Predições são realizadas com os dados dos casos de estudo e os resultados são apresentados. Os resultados obtidos pelo método de Imputação por Padrão combinado com o filtro de Kalman são consistentemente satisfatórios, apesar de nem sempre obter os melhores resultados. O método de Imputação por Decomposição também obteve bons resultados, principalmente quando algum tempo foi gasto para investigar qual de suas variações se adequou melhor a cada conjunto de dados. No geral, ambos os métodos mostraram resultados similares e/ou melhores que os métodos de imputação clássicos. |