Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Groth, Gerson Eduardo |
Orientador(a): |
Comba, Joao Luiz Dihl |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/150038
|
Resumo: |
A enorme quantidade de trajetórias contendo múltiplas dimensões, e o aumento de complexidade que esses dados ocasionam, impõem desafios ao visualizar e analisar estas informações. Visualização de Trajetórias deve lidar com alterações tanto na dimensão de espaço quanto na dimensão de tempo. Porém, os atributos de cada trajetória podem ocasionar uma melhor compreensão sobre seus comportamentos e características. Dessa forma, eles não deveriam ser neglicenciados. Neste trabalho, nós abordamos este problema interpretando séries temporais multivariadas com foco nos atributos das trajetórias, em um espaço de configuração que codifica um explícito relacionamento entre as variáveis das séries temporais. Nós propomos uma técnica original de clusterização de trajetórias, chamada Attribute Field k-means (AFKM). Ela usa um espaço de configuração dinâmica para gerar clusters baseados nos atributos e parâmetros definidos pelo usuário. Além disso, incorporando uma interface de sketching, nosso método é capaz de encontrar clusters que aproximam os exemplos de trajetórias desenhados pelo usuário. Nós também desenvolvemos um protótipo para explorar as trajetórias e clusters gerados pelo AFKM, de um modo interativo. Nossos resultados, em sintéticos e reais conjuntos de dados de séries temporais, provam a eficiência e o poder de visualização do nosso método. |