Detalhes bibliográficos
Ano de defesa: |
2002 |
Autor(a) principal: |
Parraga, Adriane |
Orientador(a): |
Schuck Junior, Adalberto |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/3540
|
Resumo: |
o exame para o diagnóstico de doenças da laringe é usualmente realizado através da videolaringoscopia e videoestroboscopia. A maioria das doenças na laringe provoca mudanças na voz do paciente. Diversos índices têm sido propostos para avaliar quantitativamente a qualidade da voz. Também foram propostos vários métodos para classificação automática de patologias da laringe utilizando apenas a voz do paciente. Este trabalho apresenta a aplicação da Transformada Wavelet Packet e do algoritmo Best Basis [COI92] para a classificação automática de vozes em patológicas ou normais. Os resultados obtidos mostraram que é possível classificar a voz utilizando esta Transformada. Tem-se como principal conclusão que um classificador linear pode ser obtido ao se empregar a Transformada Wavelet Packet como extrator de características. O classificador é linear baseado na existência ou não de nós na decomposição da Transformada Wavelet Packet. A função Wavelet que apresentou os melhores resultados foi a sym1et5 e a melhor função custo foi a entropia. Este classificador linear separa vozes normais de vozes patológicas com um erro de classificação de 23,07% para falsos positivos e de 14,58%para falsos negativos. |