Real-time exploration and analysis of big data

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Pahins, Cícero Augusto de Lara
Orientador(a): Comba, Joao Luiz Dihl
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/197422
Resumo: Esta tese consiste em desenvolver métodos para permitir a exploração e análise em tempo real de big data. As soluções devem ser eficientes em termos de memória e de tempo de execução, bem como levar em consideração a (i) escala de dados, (ii) diferentes formas de dados, (iii) análise de dados de streaming e (iv) incerteza de dados. Bancos de da- dos relacionais, ou pacotes estatísticos, têm dificuldade em lidar com grandes conjuntos de dados multidimensionais. As soluções ingênuas podem consumir quantidades proi- bitivamente grandes de memória ou tempo para responder à medida que o número de dimensões aumenta. A visualização interativa de grandes conjuntos de dados segue duas estratégias principais: amostragem e pré-computação. Uma limitação da estratégia de amostragem é a extração não trivial de amostras aleatórias de grandes conjuntos de da- dos, e estratégias de amostragem ingênuas podem gerar resultados tendenciosos. Esta pesquisa foca principalmente em estratégias de pré-computação, as quais se baseiam na idéia de pré-computar agregações. O principal gargalo dessa estratégia é a grande quanti- dade de memória comum às estruturas de dados usadas para acelerar consultas de dados, por exemplo, métodos de cubo de dados. Mesmo assim, a exploração e a análise em tempo real de big data são um dos principais desejos. de praticantes de visualização e cientistas de dados. Esta tese discute o problema e apresenta as contribuições do autor.