Detalhes bibliográficos
Ano de defesa: |
1992 |
Autor(a) principal: |
Copstein, Bernardo |
Orientador(a): |
Laschuk, Anatolio |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/27107
|
Resumo: |
Um tópico importante em modelagem geométrica é a definição de objetos que não contenham cantos ou farpas. A geração de superfícies de junção (superfícies que conectam suavemente superfícies distintas) e uma das técnicas utilizadas para solucionar esse tipo de problema. Pode-se abordar a geração de superfícies de junção sob vários aspectos. Neste trabalho, serão estudadas superfícies de junção que conectam suavemente duas outras superfícies distintas (superfícies-base). Sob este enfoque, a geração das superfícies de junção será dividida em três etapas a saber: modelagem das superfícies-base, determinação das curvas de ancoragem e geração das junções propriamente ditas. Curvas de ancoragem são curvas que determinam a forma do contato entre a junção e cada uma das superfícies base. As superfícies-base utilizadas são superfícies compostas modeladas utilizando-se "beta-splines" uniformes. Discussões sobre a melhor maneira de se modelar as mesmas foram consideradas fora do contexto deste trabalho. A determinação das curvas de ancoragem é amplamente discutida. Optou-se por utilizar um piano de corte contra cada uma das superfícies-base para a determinação das curvas de ancoragem. O cálculo da intersecção entre o plano de corte e cada um dos "patches" das superfícies-base e feito utilizando-se um método numérico hibrido baseado em um algoritmo de movimentação associado a um algoritmo de reticulado. A geração das superfícies de junção e feita utilizando-se a técnica de Hermite. Para tanto é preciso que se calculem os vetores de controle necessários a técnica de Hermite de forma que se garanta a continuidade desejada ao longo da curva de contato entre a superfície base e a junção. No caso em questão e garantida continuidade geométrica de primeira ordem (G1). Por fim, apresenta-se protótipo do modelador utilizado para validar o método proposto. São indicadosos resultados obtidos bem como uma analise comparativa com outras soluções semelhantes encontradas na literatura a disposição. Os testes com o prot6tipo foram feitos em um microcomputador com arquitetura compatível com IBM-PC 386 com 640 KBytes de RAM, 20 Mhz, adaptador gráfico VGA e co-processador matemático 80387. O protótipo pode, entretanto, ser utilizado em qualquer microcomputador compatível com IBM-PC que disponha de no mínimo 640 Kbytes de memória RAM. O uso de co-processador matemático e adaptador gráfico EGA ou de major capacidade é aconselhado. |