Utilizando algoritmo de cross-entropy para a modelagem de imagens de núcleos ativos de galáxias obtidas com o VLBA

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Perianhes, Roberto Vitoriano lattes
Orientador(a): Botti, Luiz Claudio Lima lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Presbiteriana Mackenzie
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://dspace.mackenzie.br/handle/10899/25794
Resumo: The images obtained by interferometers such as VLBA (Very Long Baseline Array) and VLBI (Very Long Baseline Interferometry), remain the direct evidence of relativistic jets and outbursts associated with supermassive black holes in active galactic nuclei (AGN). The study of these images are critical tools to the use of information from these observations, since they are one of the main ingredients for synthesis codes7 of extragalactic objects. In this thesis is used both synthetic and observed images. The VLBA images show 2-dimensional observations generated from complex 3-dimensional astrophysical processes. In this sense, one of the main difficulties of the models is the definition of parameters of functions and equations to reproduce macroscopic and dynamic physical formation events of these objects, so that images could be study reliably and on a large scale. One of the goals of this thesis is to elaborate a generic8 form of observations, assuming that the formation of these objects had origin directly by similar astrophysical processes, given the information of certain parameters of the formation events. The definition of parameters that reproduce the observations are key to the generalization formation of sources and extragalactic jets. Most observation articles have focus on few or even unique objects. The purpose of this project is to implement an innovative method, more robust and efficient, for modeling and rendering projects of various objects, such as the MOJAVE Project, which monitors several quasars simultaneously offering a diverse library for creating models (Quasars9 and Blazars10: OVV11 and BL Lacertae12). In this thesis was implemented a dynamic way to study these objects. Presents in this thesis the adaptation of the Cross-Entropy algorithm for the calibration of the parameters of astrophysical events that summarize the actual events of the VLBA observations. The development of the code of the adaptation structure includes the possibility of extension to any image, assuming that these images are dispose in intensities (Jy/beam) distributed in Right Ascension (AR) and Declination (DEC) maps. The code is validating by searching for self-convergence to synthetic models with the same structure, i.e, realistics simulations of components ejection, in milliarcsecond, similar to the observations of the MOJAVE project in 15.3 GHz. With the use of the parameters major semi-axis, angle of position, eccentricity and intensity applied individually to each observed component, it was possible to calculate the structure of the sources, the velocities of the jets, as well as the conversion in flux density to obtain light curves. Through the light curve, the brightness temperature, the Doppler factor, the Lorentz factor and the observation angle of the extragalactic objects can be estimated with precision. The objects OJ 287, 4C +15.05, 3C 279 and 4C +29.45 are studied in this thesis due the fact that they have different and complex morphologies for a more complete study.