Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Cunha, Danilo Souza da
 |
Orientador(a): |
Silva, Leandro Nunes de Castro
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Presbiteriana Mackenzie
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://dspace.mackenzie.br/handle/10899/24361
|
Resumo: |
O comércio eletrônico vem crescendo rapidamente ao longo dos últimos anos. Produtos, serviços e informações dos mais variados tipos são oferecidos todos os dias para milhares de usuários na Internet. Definir uma estratégia adequada para oferecer um produto a clientes é o objetivo dos sistemas de recomendação. Para isso leva em conta itens que podem ser ofertados considerando o interesse de cada cliente. Essa associação entre itens é uma tarefa que recai sobre a competência da mineração de dados, mais especificamente a área chamada de mineração de regras de associação. Esta dissertação investigou o uso de algoritmos bioinspirados, mais especificamente algoritmos evolutivos e imunológicos, a fim de construir associações entre os itens de uma base de dados. Foram feitos três estudos: a influência de diferentes mecanismos de seleseleção e cruzamento no algoritmo evolutivo; o uso de seleção probabilística no algoritmo imunológico; e a comparação dos algoritmos bioinspirados com o algoritmo determinístico clássico aplicado a essa tarefa, chamado de Apriori. As bases de dados para efeitos comparativos foram coletadas em lojas nacionais de comércio eletrônico. Os resulta-dos apresentados permitiram identificar uma combinação adequada dos mecanismos de sele-ção e cruzamento do algoritmo evolutivo, assim como identificar os pontos fortes e fracos dos algoritmos bioinspirados quando comparados ao algoritmo tradicional. |