Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Nogare, Diego Candile Dalle
 |
Orientador(a): |
Silveira, Ismar Frango
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Presbiteriana Mackenzie
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://dspace.mackenzie.br/handle/10899/26583
|
Resumo: |
Por meio de uma Revisão Sistemática de Literatura (RSL) foi possível entender o estado da arte das pesquisas envolvendo predição de explosões solares. Com o resultado da RSL foi descoberto que modelos de Aprendizagem de Máquina utilizando algoritmo de Support Vector Machine (SVM) são os mais utilizados para analisar e predizer as explosões solares. A proposta deste estudo é apresentar uma visão diferente, se baseando em regras de associações entre os eventos de explosões solares. |