Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Raffaelli, Tatiana Ferreira
|
Orientador(a): |
Silva, Adriana Valio Roque da
|
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Presbiteriana Mackenzie
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://dspace.mackenzie.br/handle/10899/24392
|
Resumo: |
The existence of a highly reliable prediction system to detect the occurrence of large solar flares (class X) is still an unsolved problem. Despite many studies performed so far, no such a system has been found yet. In this work, we have developed a method using Bayesian Network - an Artificial Intelligence technique for the detection of giant solar flares. The Bayesian Networks software learned the relation among the variables that describe the sunspots within an active region and built a network with the relationships among them based on conditional probabilities. The studies were divided into two stages one to detect whether the sunspot would produce a big flare or not and another phase where some networks were built to discover the day the flare would occur. The first phase results were very satisfactory reaching a reliability of 77%. The second phase was more complex and the results were about 77% (with day constraints) and 54% (a wider range of days). |