Identificação de padrões em textos de mídias sociais utilizando redes neurais e visualização de dados

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Sargiani, Vagner lattes
Orientador(a): Silva, Leandro Augusto da lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Presbiteriana Mackenzie
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://dspace.mackenzie.br/handle/10899/24472
Resumo: Na atualidade existe a geração de um grande volume de dados textuais, sendo que parte deste volume é gerado pelas chamadas mídias sociais, no qual pessoas se conectam, trocam informações e experiências. Estes dados contém conhecimento implícito valioso, que pode ser extraído e analisado de acordo com a mídia selecionada e o tipo de conhecimento procurado. O objetivo deste trabalho é demonstrar como utilizar recursos de mineração de dados, ferramentas analíticas e redes neurais do tipo Self Organized Maps (SOM) para efetuar análise sobre dados textuais e geração de conhecimento. Serão duas as abordagens: conhecimentos voltados para a área educacional (com dados de sites de Perguntas e Respostas (Question and Answers, ou simplesmente Q&A)) e identificação de tendências (com postagens no microblog Twitter). Ambas as fontes são similares em possuirem um formato de texto não estruturado. Com base em uma matriz de termos gerada através de técnicas de Mineração de Textos, originada em uma base composta por texto não estruturado, as postagens foram a base para treinamento de uma rede SOM, e com esta rede treinada foi possível gerar visualizações que permitem efetuar análises semânticas dos termos e questões agrupados e utilizá-las para identificação do conhecimento desejado. Os resultados obtidos foram: demonstrar que questões sobre assuntos similares podem ser agrupadas pela sua similaridade de termos, e visualizar estes agrupamentos em forma de nuvens de palavras, permitindo a análise semântica sobre as questões agrupadas.