Modelos lineares locais para identificação de sistemas dinâmicos usando redes neurais competitivas

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Souza, Luís Gustavo Mota
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/2433
Resumo: In this thesis the problem of nonlinear system identifi cation is approached from the viewpoint of local models. The input space is partitioned into smaller operational regions with lower complexity models (usually linear) built for each one. This type of model is an alternative to global models, for which the system dynamics is identifi ed using a single structure (usually nonlinear ones) that covers the whole input space. The aim of this thesis is to design of local linear models whose input space is partitioned by means of vector quantization algorithms, special those based on competitive learning neural networks. For this purpose, three novel local linear modeling methods based on the SOM (self-organizing map) are introduced and evaluated on the identi fication of the inverse model of four dynamical systems commonly used in the literature for performance benchmarking. The proposed models are also compared with global models based on the MLP (multilayer perceptron) and ELM (extreme learning machines), as well as with alternative local linear models, such as the Takagi-Sugeno fuzzy model and the LLM(local linear mapping) neural model. A comprehensive study is carried out to compare the performances of all the aforementioned models according to three evaluation criteria, namely: (i) normalized mean squared error, (ii) residual analysis, and (iii) Kolmogorov-Smirnov test. Of particular interest to this thesis is the evaluation of the robustness of the proposed local models with respect to the vector quantization algorithm used to train the model. The obtained results indicates that the performance of the proposed local models are superior to those achieved by the MLP-based global models and equivalent to those achieved by ELM-based global models.