Ensaios sobre o uso de redes neurais na previsão de taxa de câmbio

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Costa, Marisa Gomes da lattes
Orientador(a): Basso, Leonardo Fernando Cruz lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Presbiteriana Mackenzie
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://dspace.mackenzie.br/handle/10899/26467
Resumo: This study aims to compare and evaluate the predictive power of artificial neural network models on exchange rates. Initially, a bibliometric study and literature review is carried out in order to identify the current research status in the area. Then, an empirical study is propesed to forecast various Exchange rates using data of opening, closing,high and low in daily frequency. The data sample includes exchange rates (BRL / USD, EUR / USD and GBP / USD) from January 2014 to December 2019. Forecasts are made for a period ahead. Different architectures of the LSTM recurrent neural network model were tested. To rank the models in terms of predictive power, the results of the predictions are compared to the prediction of the random walk model, using it as a benchmark, as well as ARIMA. The selection of models is made by the model confidence set (MCS). Lunde and Nason. The results indicated that the LSTM model is superior to the random walk and ARIMA for all analyzed currencies.