Previsão do preço de ações brasileiras utilizando redes neurais artificiais

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Torres, Sérgio lattes
Orientador(a): Hadad Junior, Eli lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Presbiteriana Mackenzie
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
GRU
MDA
Área do conhecimento CNPq:
Link de acesso: https://dspace.mackenzie.br/handle/10899/28379
Resumo: A análise do mercado de ações é influenciada pela tendência de alta e de queda do preço dos ativos em relação a curtos períodos de tempo, muitas vezes em virtude de sentimentos e expectativas de investidores, que podem afetar a movimentação das ações. Uma das possibilidades de maximizar os retornos na previsão de ações é prever o movimento direcional dos ativos em vez de prever os preços. Este artigo analisa o uso de redes neurais artificiais para prever o movimento direcional dos ativos e compara o desempenho de duas arquiteturas de redes neurais: LSTM e GRU. O índice Ibovespa e algumas ações são analisados em diversos horizontes de tempo visando a descoberta de padrões específicos. O desempenho das referidas arquiteturas é muito semelhante entre si: para horizontes de tempo curtos a arquitetura LSTM apresentou melhor precisão, e para horizontes de tempo longos a GRU é mais precisa que a LSTM.