Desenvolvimento e validação de um sistema de identificação de emoções por visão computacional e redes neurais convolucionais com transferência de aprendizado

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Matos, Hamilton de lattes
Orientador(a): Notargiacomo, Pollyana Coelho da Silva lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Presbiteriana Mackenzie
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://dspace.mackenzie.br/handle/10899/24469
Resumo: This research aims to establish a methodology for the creation of a convolutional neural network in situations where there is a reduced number of data for training. The scenario adopted is the identi_cation of facial expressions in images and their respective emotions. Through the validation of the proposed method, in addition to the availability of the methodology itself, a public access interface is also available for providing information about the emotions detected in an image. In this context, human behavior studies such as Paul Ekman's analysis and definitions of universal emotions are used. Diferent techniques of computer vision and machine learning with convolutional neural networks were used to create the software. The aim of this work is to verify the possibility of real-time analysis, aiming to provide data in situations in which feedback can be fundamental for making certain decisions (eg in reactions in statements, for example). Even on a reduced training data set, it was possible to achieve an average final test accuracy of 65 % with an average training time of ten minutes.