Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
ALVES JÚNIOR, Carlos Antônio |
Orientador(a): |
REN, Tsang Ing |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Ciencia da Computacao
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/52277
|
Resumo: |
Riscos relacionados a exposição excessiva de pacientes à radiação durante a aquisição de to- mografias computadorizadas são motivo de preocupação crescente na comunidade médica. Tomografias obtidas com menores quantidade de radiação ou redução de projeções poderiam aliviar o problema, mas resultam em artefatos, ruídos e distorções na imagem reconstruída. Sendo assim, diversos métodos baseados na aplicação de Redes Neurais Convolucionais (CNNs, do inglês Convolucional Neural Networks) para recuperação das tomografias obtidas com baixa dosagem (LDCTs, do inglês Low-dose Computed Tomography ), apresentaram bons resulta- dos. Métodos baseados em CNNs 3D obtiveram resultados ainda mais promissores, visto que exploram melhor as relações entre os pixeis das visões ortogonais dos volumes CT. CNNs 3D possuem, no entanto, um custo computacional maior associado. Além disso, são mais sensí- veis ao problema do desbalanceamento de classes, que consiste na aprendizagem enviesada em favor de uma classe de pixeis mais abundante. Ao mesmo tempo, métodos baseados em CNNs 2D não exploram tão bem as relações entre pixeis das visões ortogonais, visto que processam cada fatia do volume tomográfico separadamente, o que leva a uma demanda computacional menor. Neste trabalho, é apresentado um método que busca explorar as relações entre os pixeis dos eixos Axial, Coronal e Sagittal dos volumes LDCT utilizando-se de um ensemble de quatro CNNs 2D, onde, três delas processam os eixos ortogonais do volume LDCT de forma separada, e a quarta faz a fusão das saídas das três redes anteriores. Dessa forma, resultados tão bons quanto ou superiores aos oriundos do uso de CNNs 3D, podem ser obtidos sem os custos computacionais associados as mesmas. Para os experimentos, foram utilizados duas ba- ses de dados, uma simulando tomografias computadorizadas com projeções-esparsas, e a outra com dados reais de tomografias computadorizadas obtidas com redução direta de radiação. O método proposto apresentou resultados majoritariamente superiores aos modelos 2D e 3D. |