Solutions of the parity problem in automata networks

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Faria, Fernando
Orientador(a): Oliveira, Pedro Paulo Balbi de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
eng
Instituição de defesa: Universidade Presbiteriana Mackenzie
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://dspace.mackenzie.br/handle/10899/33598
Resumo: O problema de paridade é um benchmark binário clássico para abordar a capacidade computacional e as limitações das redes de autômatos. Refere-se a conceber uma regra local para permitir decidir se o número de estados 1 nos nós de uma rede arbitrária é um número ímpar ou par, sem acesso global aos nós. Em sua formulação padrão, a rede de autômatos possui um número ímpar de nós cujos estados, arranjados como uma configuração cíclica, devem convergir para um ponto fixo de todos os 0s, se a configuração inicial tiver um número par de 1s, ou para um ponto fixo de todos os 1s, caso contrário. Foi demonstrado que uma regra local sozinha é capaz de resolver o problema nesta formulação. Aqui, fornecemos inicialmente uma solução síncrona para o problema totalmente baseada na regra de paridade local do espaço elementar do autômato celular (número 150), com um certo padrão de conexão entre os nós. Além disso, generalizamos esta solução, mostrando como obter várias outras, combinando a regra 150 com as regras 170 e 240, que são os deslocamentos locais desse mesmo espaço elementar, de forma que a solução original seja apenas uma entre inúmeras possibilidades. Tais soluções podem ter tempos de convergência diferentes para configurações específicas, mas são equivalentes no contexto de todas as configurações de um determinado tamanho. As soluções foram obtidas e avaliadas computacionalmente e apresentadas aqui sem suas provas formais, mas evidências empíricas sugerem que elas podem ser obtidas pelo mesmo tipo de técnica que usamos na solução exclusivamente com a regra 150.