Avaliação da citotoxicidade, genotoxicidade e bioatividade de cimentos experimentais a base de silicato de cálcio com diferentes radiopacificadores e dos cimentos Biodentine e MTA Plus

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Cornélio, Ana Lívia Gomes [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/149225
Resumo: Calcium silicate-based cements are studied as reparative materials. This study was divided into 4 chapters: In the first, cytotoxicity (MTT and apoptosis) and genotoxicity (Comet assay) were evaluated in Saos-2 for: Pure calcium silicatebased (CSC); Modified (CSCM); resin-based (CSCR1, CSCR2, CSCR3). In the Viability assay, CSC and CSCR3 (50mg/mL) showed lower cell viability. CSCR1, CSCR2, CSCR3 showed more apoptosis. Only CSC and CSCR2 were not genotoxity in 10mg/mL (P<0.05). Chapter 2, CSCM and CSCR2 were associated with radiopacifiers: zirconium oxide and niobium oxide (micro and nano), bismuth oxide and calcium tungstate. MTA was used for the control of cytotoxicity and bioactivity tests. All were viable and showed similar apoptosis (1:8). Necrosis was superior (P<0.05). CSCM and CSCR induced alkaline phosphatase (ALP) and ARS. Chapter 3, was compared Biodentine (Septodont), MTA Plus (Avalon), CSCRs ZrO2 and Nb2O5, on cytotoxicity and genotoxicity. In MTT (1, 3 and 7 days) all were similar. In the qPCR, BAX was expressed by CSCRs (3d). MTAP and CSCR ZrO2 expressed in 5 days. For BCL2 gene (3 and 5d) only MTAP and CSCR Nb2O5 (5d). In genotoxixity assay, all (1:2 and 1:8) were similar (P<0.05). Chapter 4, we evaluated the same materials in Saos2 bioactivity: MTT, cell proliferation, ALP (1, 3 and 7d), qPCR (alp and ocn) and ARS. All groups were viable and induced ALP, ARS and gene expression, particularly CSCR Nb2O5 and Biodentine. Therefore, the biological materials has the potential to be used in endodontics. Additional studies should be conducted, especially for experimental cements. Additional studies should be conducted, especially for experimental cements.