Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Bazão, Vanderléa Rodrigues [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/94318
|
Resumo: |
Neste trabalho fizemos um levantamento das diferentes versões discretas e contínuas dos argumentos de Gordon, utilizados no estudo espectral de operadores de Schrödinger unidimensionais. Estudamos como aproximações periódicas do potencial (caso contínuo) e ocorrências de estruturas repetitivas do potencial (caso discreto) permitem excluir o espectro pontual de tais operadores. No caso discreto, as aplicações dos argumentos de Gordon fornecem resultados genéricos, q.t.p. (quase toda parte) e uniformes sobre a ausência de espectro pontual para modelos de Schrödinger com potenciais gerados por substituições primitivas e rotações na circunferência. Parte dos resultados obtidos na demonstração desses argumentos podem ser usados para mostrar que o espectro dos operadores tem medida de Lebesgue zero. Consequentemente, com a ocorrência simultânea das propriedades ausência de espectro pontual e espectro com medida zero , obtemos operadores de Schrödinger com espectro puramente singular contínuo. No caso contí- nuo, as aplicações incluem operadores de Schrödinger gerados por potenciais de Gordon com frequências de Liouville, funções Hölder contínuas, funções escada e funções com singularidades locais |